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Introduction tcs research

Challenges with off-the-shelf RL algorithms

» Not sample efficient: large amount of information loss

» Difficulty with hard exploration tasks and challenges posed by partially
observable environment (POMDP)

Motivation in POMDP context

» Model-free algorithms very difficult to apply in partially observable settings,
at least partly due to the violation of Markov assumptions

» Possible overfitting to noise — poor knowledge of the environment

» Information available during the decision-making process is neither perfect nor

complete
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Prior Work and State of the art tcs research

» Learning better representations by imposing Inelevant Relevant
a constraint of reconstructing the entire state L
or observation from the latent
e

representations, forcing the model to encode
all the information into dense

representations' — Decoupled from policy - .
and reward signal often leads to the encoding
of information that is irrelevant? ‘ el

Latent Space \

Source Zhang et al. 2020

'Ha and Schmidhuber 2018; Hafner et al. 2019; Lee et al. 2019.

2Zhang et al. 2020; Gelada et al. 2019.
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Prior Work and State of the art tcs research

» Learning decoupled the representations learning from policy
improvement Lange and Riedmiller 2010; Lange, Riedmiller, and Voigtlander
2012; Subramanian et al. 2020 — Not suitable for for POMDPs (noisy
information)

» Notion of making latent representations reflect the state (dis)similarity by

adding loss term® — Bisumulation is computationally intensive metric and
how to adopt to POMDPs

» Self Imitation Learning (SIL)* proposes to learn latent representations better
by leveraging past experiences to solve harder exploration problems.—
Considered as baseline

8Zhang et al. 2020; Gelada et al. 2019.
10h et al. 2018.
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Our Intuition tcs research

We hypothesize that augmenting latent representations with predictive loss
(prediction in latent space not reconstruction) and learning end-to-end generates
better policy and sample efficiency as opposed to decoupled learning of
representations and policy in POMDPs.
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Key Contribution tcs research

» Proposing a training paradigm and loss function to learn robust latent
representations in POMDP settings contextualized on latent representations
of belief state

» Ability to modify any off-the-shelf RL algorithm to improve the sample
efficiency and exploration characteristics

» Extensive evaluation on two partially observable environments with varying
scales
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Preliminaries tcs research

Markov decision process (MDP) Partially Markov decision process (POMDP)
(S, A, T,R,v), where (S, A, T,R,Q,0,7), where

S = state space, S = state space,

A = action space, A = action space,

T = transition probabilities, T = transition probabilities,

R = rewards, and R = rewards,

~v = discount factor for future rewards {2 = observation,
O = observation function, and
~v = discount factor for future rewards
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System Architecture tcs research
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Augmented Loss Function tcs research

Policy Gradient Update

AG o Vglog(mg(ar/st)) A(st, ar) + BVoH (mo(st))
mg = policy parameterized by 0
A(st, a;) = Advantage Function

Augmented Policy Gradient Update

A o< Vglog(mo(as/st))A(se, ar) + BVeH(ma(sy)) + ALNE
where, LVF = n x mse(hfﬁd, hit1)
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Augmented Loss Function tcs research

Proximal Policy Optimization (PPO) Loss

LPPO = ]E[mz'n(rt(ﬂ)fit, clip(ry(0),1 —€,1 + 6)/1,5) + (Vo(se) — Vtmrg)2 + BH (mg(st)]

Policy Loss Value loss Entropy

FoLaR Loss

LFoLaR LPPO 4 LNL

where, LN = min(n x mse(hf_ﬁd, hit1),€)

CDNEULT:’\N[Y

Meisheri & Khadilkar 10 of 22 ©2021 M SERVICES



Environments tcs research

Mini Gridworld
» Structured input
POMDP
Visible grid size 7 x 7
Dynamic Obstacles: 6 x 6, 16 x 16

>
>
>
» Doorkey Gridsize: 6 x 6, 8 x 8
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Environments tcs research

Catcher
» RGB Pixel inputs
» MDP
» Grid size 32 x 32
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Training Results

Dynamic Obstacles 6 x 6
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Training Results tcs research

Dynamic Obstacles 16 x 16
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Training Results tcs research

DoorKey 6 x 6
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Training Results

DoorKey 8 x 8
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Training Results tcs research
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Ablation Study tcs research

Effect of n value, 10 random seeds dynamic obstacles 6 x 6
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‘ Ablation Study tcs research

Testing on out-of-distribution environments
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Conclusion and Summary s research

» We presented FoLaR, a method to learn robust latent representations in
partially observable environments

» Loss function L} which can be augmented with any on-policy off the shelf
algorithm to improve its exploration and convergence characteristics

» The hyperparameter n controls the magnitude of prediction loss, and can be

tuned based on the predictability of the environment, but most reasonable
values result in superior performance compared to baselines
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Conclusion and Summary s research

» FoLaR performs especially well in hard exploration tasks and larger grid sizes
where entropy coefficient is kept static, indicating improved latent
representations that lead to more focussed exploration

» In future work, it would be interesting to look at adaptive 1, which could
learn better policies even faster
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Contact s research

Thank You!

Hardik Meisheri: hardik.meisheri@tcs.com, hardik.meisheri@gmail.com
Harshad Khadilkar: harshad.khadilkar@tcs.com, harshadk@iitb.ac.in
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