

FoLaR: Foggy Latent Representations for Reinforcement Learning with Partial Observability

Hardik Meisheri and Harshad Khadilkar

Planning and Control Research Group, TCS Research, Mumbai, India July 2021, \boldsymbol{IJCNN}

Introduction

tcs research

©202

Challenges with off-the-shelf RL algorithms

- ▶ Not sample efficient: large amount of information loss
- ▶ Difficulty with hard exploration tasks and challenges posed by partially observable environment (POMDP)

Motivation in POMDP context

- ▶ Model-free algorithms very difficult to apply in partially observable settings, at least partly due to the violation of Markov assumptions
- \blacktriangleright Possible overfitting to noise \rightarrow poor knowledge of the environment
- ▶ Information available during the decision-making process is neither perfect nor complete

Meisheri & Khadilkar

Prior Work and State of the art

 2 Zhang et al. 2020; Gelada et al. 2019.

• Learning better representations by imposing a constraint of reconstructing the entire state or observation from the latent representations, forcing the model to encode all the information into dense representations¹ \rightarrow Decoupled from policy and reward signal often leads to the encoding of information that is irrelevant²

¹Ha and Schmidhuber 2018: Hafner et al. 2019: Lee et al. 2019.

3 of 22

Prior Work and State of the art

tcs research

- ► Learning decoupled the representations learning from policy improvement Lange and Riedmiller 2010; Lange, Riedmiller, and Voigtländer 2012; Subramanian et al. 2020 → Not suitable for for POMDPs (noisy information)
- ► Notion of making latent representations reflect the state (dis)similarity by adding loss term³ → Bisumulation is computationally intensive metric and how to adopt to POMDPs
- ► Self Imitation Learning (SIL)⁴ proposes to learn latent representations better by leveraging past experiences to solve harder exploration problems.→ Considered as baseline

 $^{^{3}}$ Zhang et al. 2020; Gelada et al. 2019.

 $^{^{4}}$ Oh et al. 2018.

©2021

We hypothesize that augmenting latent representations with predictive loss (prediction in latent space not reconstruction) and learning end-to-end generates better policy and sample efficiency as opposed to decoupled learning of representations and policy in POMDPs.

©2021

- Proposing a training paradigm and loss function to learn robust latent representations in POMDP settings contextualized on latent representations of belief state
- ► Ability to modify any off-the-shelf RL algorithm to improve the sample efficiency and exploration characteristics
- ▶ Extensive evaluation on two partially observable environments with varying scales

Preliminaries

tcs research

Markov decision process (MDP)

 $(\mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \gamma)$, where

- $\mathcal{S} = \text{state space},$
- $\mathcal{A} = \operatorname{action space},$
- $\mathcal{T} = \text{transition probabilities},$
- $\mathcal{R} = \mathrm{rewards}, \, \mathrm{and}$
- γ = discount factor for future rewards

Partially Markov decision process (POMDP) $(S, A, T, R, \Omega, O, \gamma)$, where

- S = state space,
- $\mathcal{A} = \text{action space},$
- $\mathcal{T} = \text{transition probabilities},$
- $\mathcal{R}=\mathrm{rewards},$

 $\Omega = observation,$

- $\mathcal{O} = \text{observation function, and}$
- γ = discount factor for future rewards

©202

System Architecture

tcs research

SERVICES

©2021

tcs research

Policy Gradient Update

$$\Delta \theta \propto \nabla_{\theta} log(\pi_{\theta}(a_t/s_t)) A(s_t, a_t) + \beta \nabla_{\theta} H(\pi_{\theta}(s_t))$$

$$\pi_{\theta} = \text{policy parameterized by } \theta$$

$$A(s_t, a_t) = \text{Advantage Function}$$

Augmented Policy Gradient Update

$$\Delta\theta \propto \nabla_{\theta} log(\pi_{\theta}(a_t/s_t)) A(s_t, a_t) + \beta \nabla_{\theta} H(\pi_{\theta}(s_t)) + \Delta L_t^{NL}$$

where, $L_t^{NL} = \eta \times mse(h_{t+1}^{pred}, h_{t+1})$

tcs research

©2021

Proximal Policy Optimization (PPO) Loss

$$L_t^{PPO} = \hat{\mathbb{E}}[\underbrace{\min(r_t(\theta)\hat{A}_t, clip(r_t(\theta), 1 - \epsilon, 1 + \epsilon)\hat{A}_t)}_{\text{Policy Loss}} + \underbrace{(V_\theta(s_t) - V_t^{targ})^2}_{\text{Value loss}} + \underbrace{\beta H(\pi_\theta(s_t))}_{\text{Entropy}}]$$
Fol.aB Loss

$$\begin{split} L_t^{FoLaR} &= L_t^{PPO} + L_t^{NL} \\ \text{where, } L_t^{NL} &= \min(\eta \times mse(h_{t+1}^{pred}, h_{t+1}), \epsilon) \end{split}$$

Environments

Mini Gridworld

- ▶ Structured input
- ▶ POMDP
- \blacktriangleright Visible grid size 7×7
- \blacktriangleright Dynamic Obstacles: $6\times 6,\,16\times 16$
- ▶ Doorkey Gridsize: $6 \times 6, 8 \times 8$

tcs research

Meisheri & Khadilkar

Environments

Catcher

- ▶ RGB Pixel inputs
- ► MDP
- ▶ Grid size 32×32

tcs research

TATA CONSULTANCY SERVICES

©2021

Dynamic Obstacles 6×6

tcs research

CONSULTANCY SERVICES

©2021

Dynamic Obstacles 16×16

tcs research

CONSULTANCY SERVICES

©2021

DoorKey 6×6

tcs research

TATA CONSULTANCY SERVICES

©2021

L

DoorKey 8×8

tcs research

CONSULTANCY SERVICES

©2021

L

Catcher

Ablation Study

tcs research

Effect of η value, 10 random seeds dynamic obstacles 6×6

Ablation Study

tcs research

Testing on out-of-distribution environments

©202

- ▶ We presented FoLaR, a method to learn robust latent representations in partially observable environments
- ▶ Loss function L_t^{NL} which can be augmented with any on-policy off the shelf algorithm to improve its exploration and convergence characteristics
- The hyperparameter η controls the magnitude of prediction loss, and can be tuned based on the predictability of the environment, but most reasonable values result in superior performance compared to baselines

tcs research

©2021

- ► FoLaR performs especially well in hard exploration tasks and larger grid sizes where entropy coefficient is kept static, indicating improved latent representations that lead to more focussed exploration
- ▶ In future work, it would be interesting to look at adaptive η , which could learn better policies even faster

Contact

©2021

Thank You!

Hardik Meisheri: hardik.meisheri@tcs.com, hardik.meisheri@gmail.com Harshad Khadilkar: harshad.khadilkar@tcs.com, harshadk@iitb.ac.in